这背后说明,智能BI对大模型的利用,应当只是AI+BI的一次“机遇”兑现,那些直接想要跟风在BI产品中“添加”大模型的做法,可能因为缺乏基础很难行得通,这不是风口,只能是有准备的仗。
这突出表现为思迈特在对话式分析上相对行业更加凸显的技术优势,例如白泽在功能上十分类似ChatGPT-o4之上提供的 Advanced Data Analysis 能力——用户指定CSV 或 Excel 文件,ChatGPT理解问题,生成Python 代码去解决用户问题(图:Advanced Data Analysis实例,查天气数据、分析数据、作图)
这背后要求的计算能力分层等能力成为思迈特做智能BI的独特AI技术优势,最终能够执行复杂的数据分析逻辑,而不仅仅是简单的查数。显然,这只能来源于长期的AI布局。
2、“BI”——AI+BI本质是AI for BI,BI能力积累是核心
从文本框自然语言交互不难看出,AI+BI对产品力的提升,本质上是在解决BI的“最后一公里”问题,某种程度上,AI+BI就是AI for BI,因此BI能力积累仍然是核心、是关键。
而拆解下来,BI的积累无非是数据模型和指标模型,这恰恰也是获得快速增长的思迈特在底层模型上所积累的优势所在,例如在数据模型上,星座模式、多事实表、OLAP分析能力等能够直接与老牌的微软PowerBI的Dax对标,以及在指标模型上对数据模型有更强的封装能力,提供了多业务视角的管理能力,更好地与场景结合。
实际上,这也说明,在AI+BI的组合中,BI 是往下,在底层数据架构上解决了与大数据平台、数据湖、数据中台的对接,属于基础数据架构的延展,而AI则往上,解决智能分析应用、业务执行的问题,从而形成了一个完整的体系。
形象地说,这很像电商+快递,我们用户只要下单、等待快递送货即可,但这背后却要有十分庞杂的电商运营体系+全国乃至全球物流体系,这是看不见但核心的内容。
3、“+”——场景实践是后进者的“叹息之墙”
增速遥遥领先的BI厂商是国产排名第二的思迈特,而在BI市场上,另一件事也十分值得玩味:工信部赛迪研究院旗下赛迪顾问发布的《2023中国银行业IT解决方案市场份额分析报告》中,2023年银行业商业智能软件产品市场上,市场占有率第一同样是思迈特。
行业 Know-how是AI+BI的如何“+”的关键问题,只有面向行业与场景有深入的实践,才能做好智能BI。
在特定行业,如果没有实践沉淀,后进者很难获得竞争优势,这既包括BI新玩家,也包括市场成熟BI厂商在面向某些缺乏实践认知的特定行业时——金融行业的BI市场占有率排名恰恰是这种现象的产物,市场最终只相信、只愿意选择“懂行”的BI厂商。
回过头来看,如果说行业知识是能量储备,那么AI大模型就成为价值爆发的引线,从思迈特案例不难看出,能够获得搅动市场格局的大增速,与其沉淀 BI 数据分析行业 13 年、积累了5000+的客户经验有直接关系,在金融之外,思迈特还完成了政府、制造、医疗、教育等众多行业知识的储备,从官方透露的信息看,以智能BI,其已经成功签单某头部券商客户和某大型集成商,同时还在持续跟进 100+大型客户,这是行业 Know-how对BI厂商巨大价值的直接呈现。
评论列表()