首页AI大模型 首个AIOS平台重磅发布:新一代AI基础设施来了

首个AIOS平台重磅发布:新一代AI基础设施来了

新一代 IT 基础设施,将从通用算力+云平台转型为AI算力+AIOS平台。AI正在重构世界。正如世界是立体的,AI重构也正从多维度开启:基础设施重构,业务应用重构,交互模式重构,数据价值重…

新一代 IT 基础设施,将从通用算力+云平台转型为AI算力+AIOS平台。

AI正在重构世界。正如世界是立体的,AI重构也正从多维度开启:基础设施重构,业务应用重构,交互模式重构,数据价值重构,生态系统重构……

2023年6月,英伟达市值首次突破万亿美元,率先引爆基础设施重构的全球化浪潮。随着数据中心转向智算中心,硬件基础设施从通用算力走向AI算力,软件基础设施也将转型为新一代AI基础设施——AI操作系统(AIOS)平台。

新一代AI基础设施AIOS平台

AI企业级商用的道路并不平坦。

2022年11月,‌OpenAI ChatGPT-3‌开启了生成式AI(GenAI)走向商用的新时刻。据IDC预测,到2025年仅仅三年时间,全球2000强企业就会把超过40%的核心IT支出用于AI相关计划,千亿级企业AI大市场已徐徐拉开。但另一方面,‌OpenAI ChatGPT企业版收入占比仅为21%,且有外媒报道2024年OpenAI或将面临50亿美元巨额亏损。

中国AI企业级市场则面临更多挑战。

算力层:与国外以英伟达为主的AI算力不同,中国市场呈现多架构多品牌的AI算力格局。企业不仅仍旧面临算力稀缺,如果各异构算力之间无法互通,还会形成硬件算力竖井。

模型层:产品导向必将转向场景导向。随着训推模型向场景化发展,不同场景下模型分工将更为专业,大模型呈垂直化趋势,在企业侧部署易于发展为模型生态竖井。

运营层:“百模大战”迅速走向推理应用,亟待在解耦算力竖井和模型竖井的基础上,实现跨平台的计量计费,迅速提升企业AI普及率。

“AI任务的多样性要求不同的模型处理,数据的多样性要求多模态能力,算力的异构性要求分布式多架构并行,模型的不断演进要求企业灵活更迭新的AI模型……面对企业AI的复杂与困境,亟待能够破局的新一代AI基础设施。”云轴科技ZStack创始人兼CEO张鑫认为,“一个能够同时解耦算力竖井和模型竖井、全域感知动态调度、实现自服务运营的新一代AI基础设施AIOS平台,成为提升企业AI渗透率的关键一环。”

作为AI生态系统中的新型形态,AIOS平台应该如何定义,包括哪些关键要素?

与模型即服务(MaaS)不同,AIOS是专门为AI应用而设计的操作系统平台,它不仅可以高效管理硬件算力资源,还内置AI引擎解耦不同模型、调度不同算力、执行各种AI任务,通过自服务运营模式降低AI应用门槛,提高AI应用效率。ZStack张鑫认为,作为新一代AI基础设施,AIOS平台需要在安全可控、持续迭代的基础上,同时在算力层、模型层、运营层三大层面实现以AI为核心的重构:

算力层,从运维视角,以AI为核心进行算力资源预测、精分、调度,降低AI应用成本;

模型层,从开发视角,以AI应用框架进行AI训推模型无缝集成与生命周期管理,优化AI应用性能;

运营层,从业务视角,提供多智算中心、多集群、多租户的按量计费运营,实现AI自服务化。

8月6日,云轴科技ZStack正式发布首个AIOS平台“智塔“,期望通过同时解耦算力竖井和模型竖井,优化AI应用性能和成本,解锁千亿级企业AI市场。

算力层

ZStack AIOS平台“智塔“的算力精分调度平台,支持NVIDIA、AMD、Intel、海光、华为昇腾、寒武纪、燧原、天数智芯、太初元碁、壁仞、摩尔线程、沐曦等中国市场上的主流品牌和几十种AI芯片型号,实现异构算力协同不同AI 模型之间的优化路由。

模型层

ZStack AIOS平台”智塔”的动态模型自适应平台,可以支持生成式AI(GenAI)、自然语言处理 (NLP)、计算机视觉、机器学习(ML)、深度学习(DL)以及多模态AI,并支持Llama、Gemma、通义千问Qwen、智谱ChatGLM、百川Baichuan、零一万物Yi、OLMo、GPT-NeoX等数百种开源大模型,实现模型压缩与性能优化,模型选型与生命周期管理,训推高效部署与自适应调度,达到跨软硬件的全面性能优化。

运营层

ZStack AIOS平台”智塔”的全域感知自服务平台,可以进行多租户隔离和动态资源配额管理,实现跨智算中心、跨集群的全域感知统一调度,提供按量计费的动态训推服务,具备可视化统一门户,弹性跨域容错,实现精细化的自服务运营体系。

算力层:提升异构算力效率,破局算力稀缺难题

“AI的尽头是电力。“这一观点其实是AI芯片全球性规模扩张的展现。随着训推竞赛展开,千卡规模、万卡规模不断升级,AI算力资源稀缺且成本高昂。

在中国企业AI应用中,面对异构算力与多种模型选择,企业首要的需求是快速部署和高效运维AI模型。目前,AI算力池化替代异构算力竖井已成趋势,企业需要一个AIOS平台解决模型高效部署运维难题,避免为单个模型部署单一AI算力形成竖井架构,将异构算力池化并实现协同调度,使得企业在模型快速部署的同时,高效利用异构算力资源,显著降低算力成本。

ZStack AIOS平台“智塔”具备裸金属、虚机与容器多引擎能力,通过GPU切割精分量化,对异构AI算力实现可达1%的量化管理,大幅降低算力成本。算力层的另一大核心在于,在AI算力精分量化基础之上,通过分布式协同调度能力,实现异构算力的统一管理和动态调度,达到算力的精细化资源复用,进一步降低算力成本。

模型层:多模型框架集成,MaaS服务灵活高效

《IDC FERS Survey Wave》2024年发布的最新调研显示,48%的GenAI都将在企业本地部署,随着AI从训练走向推理,行业企业应用成为真正加速AI商用化进程的关键。

在中国企业AI训推实践中,完整完成一个AI任务往往需要多个专业模型协同工作。另一方面,各大领域开源模型的大量涌现,也助推企业使用不同模型解决不同业务问题。ZStack张鑫认为:“类似数据库应用,企业会同时使用Oracle、MongoDB、MySQL、Redis等不同类型数据库来解决不同场景的问题,未来,企业同时使用多个模型将成为常态。“

面对多种模型应用,企业AI应用的一个重要需求是模型选型、精调、推理、MLops/LLMops的调度与性能优化。企业需要一个AIOS平台集成模型框架来实现多个模型的协同能力,并同时通过模型压缩加速、数据感知编排等实现AI模型的性能优化。

ZStack AIOS平台“智塔”一方面通过动态模型自适应平台,提供从模型训练、评估、推理到更新的全生命周期管理,高效实现模型服务优化;另一方面通过将AI任务智能解构,动态优化路由、分布式并行训推,自适应负载均衡等能力,结合算力层的算力精分协同调度平台,显著提升模型训推性能和模型服务体验。

运营层:全域感知自服务化,提升企业AI渗透率

作为新一代AI基础设施,AIOS平台在模型层和算力层通过优化资源分配和模型部署,降低企业AI应用门槛,提升企业AI应用效率;另一方面,如果企业还具备AI自服务运营能力,将在提升企业AI渗透率的进程中起到四两拨千斤的作用。

ZStack AIOS平台“智塔”以AI为核心提供更全面更直观的可视化统一视图,实现精细化管理;在动态调度资源方面,跨多智算中心、多集群全域调度自适应模块,可以根据需要实现跨平台的自动扩缩和调度功能;在训推服务高可用方面,弹性容错自愈模块具备快速故障定位与故障自愈能力,可以实现跨平台的容错与灾备;在安全与隐私方面,将融合敏感数据检测能力,实现端到端的数据安全保障作为运营基础;在系统运营方面,可实现多租户隔离和资源配额管理,训推计量计费服务。

作为新一代AI基础设施,AIOS平台通过算力层、模型层、运营层三大方向以AI为核心进行重构,解耦异构算力竖井降低AI应用成本;解构模型生态竖井优化AI应用性能;全域计量计费实现AI自服务化,加速企业AI渗透率,解锁千亿企业AI市场。

本文来自网络,不代表新质生产力网立场。转载请注明出处: http://www.xzicn.com/ai/dmx/1211.html
上一篇亿铸科技亮相“火炬科企对接”,用存算一体赋能AI大算力芯片
下一篇 云南广播电视台携手腾讯云等多家知名单位正式成立新技术实验中心
力龙1

作者: 力龙1

加快形成新质生产力!

为您推荐

评论列表()

    联系我们

    联系我们

    1851688011@qq.com

    在线咨询: QQ交谈

    邮箱: 1851688011@qq.com

    工作时间:周一至周日,8:00-22:30,节假日无休息

    关注微信
    微信扫一扫关注我们

    微信扫一扫关注我们

    关注微博
    返回顶部